Abstract

Yttrium doped ceria materials (Ce1−xYxO2−x/2) are widely studied for their application in Solid Oxide Fuel Cells devices. An anomalous decrease in the isothermal ionic conductivity at increasing Y3+ concentration above a critical value has been observed and attributed to the formation of defect clusters / domains at the nanometric scale, the crystallographic structure of which is still under debate. In this context we present a combined Synchrotron Radiation and Neutron Powder Diffraction study. In particular, neutrons allow to determine accurately oxygen related parameters, the contribution of which in terms of X-ray scattering power is almost negligible when compared to that of cations. The effect of doping on the average structure is investigated using conventional Rietveld analysis, while the Pair Distribution Function (PDF) technique is used to explore structural distortions and the spatial extent of disorder as well. The local structure observed in the real space is not consistent with the mean crystallographic one and is better modeled considering a biphasic model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.