Abstract

A charge operator is constructed for a quantum field theory with an abelian discrete gauge symmetry, and a non-local order parameter is formulated that specifies how the gauge symmetry is realized. If the discrete gauge symmetry is manifest, then the charge inside a large region can be detected at the boundary of the region, even in a theory with no massless gauge fields. This long-range effect has no classical analog; it implies that a black hole can in principle carry “quantum-mechanical hair”. If the gauge group is nonabelian, then a charged particle can transfer charge to a loop of cosmic string via the nonabelian Aharonov-Bohmeffect. The string loop can carry charge even though there is no localized source of charge anywhere on the string or in its vicinity. The “total charge” in a closed universe must vanish, but, if the gauge group is nonabelian and the universe is not simply connected, then the “total charge” is not necessarily the same as the sum of all point charges contained in the universe.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.