Abstract

ABSTRACTThis paper examines the novel local discontinuous Galerkin (LDG) discretization for Hamiltonian PDEs based on its multisymplectic formulation. This new kind of LDG discretizations possess one major advantage over other standard LDG method, which, through specially chosen numerical fluxes, states the preservation of discrete conservation laws (i.e. energy), and also the multisymplectic structure while the symplectic time integration is adopted. Moreover, the corresponding local multisymplectic conservation law holds at the units of elements instead of each node. Taking the nonlinear Schrödinger equation and the KdV equation as the examples, we illustrate the derivations of discrete conservation laws and the corresponding numerical fluxes. Numerical experiments by using the modified LDG method are demonstrated for the sake of validating our theoretical results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call