Abstract
We study sets of local dimensions for self-similar measures in satisfying the finite neighbour condition, which is formally stronger than the weak separation condition (WSC) but satisfied in all known examples. Under a mild technical assumption, we establish that the set of attainable local dimensions is a finite union of (possibly singleton) compact intervals. The number of intervals is bounded above by the number of non-trivial maximal strongly connected components of a finite directed graph construction depending only on the governing iterated function system. We also explain how our results allow computations of the sets of local dimensions in many explicit cases. This contextualises and generalises a vast amount of prior work on sets of local dimensions for self-similar measures satisfying the WSC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.