Abstract
In the conventional differential quadrature (DQ) method the functional values along a mesh line are used to approximate derivatives and its application is limited to regular regions. In this paper, a local differential quadrature (LDQ) method was developed by using irregular distributed nodes, where any spatial derivative at a nodal point is approximated by a linear weighted sum of the functional values of nodes in the local physical domain. The weighting coefficients in the new approach are determined by the quadrature rule with the aid of nodal interpolation. Since the proposed method directly approximates the derivative, it can be consistently well applied to linear and nonlinear problems and the mesh-free feature is still kept. Numerical examples are provided to validate the LDQ method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.