Abstract
The dynamic change, huge data size, and complex structure of the data stream have made it very difficult to be analyzed and protected in real-time. Traditional privacy protection models such as differential privacy which need to rely on the trusted servers or companies, and this will increase the uncertainty of protecting streaming privacy. In this paper, we propose a new privacy protection protocol for data streams under local differential privacy and w-event privacy, which makes it possible to keep up-to-date statistics over time, and it is still available when the third parties are untrusted. We use sliding window to collect the data streams in real-time, finding out the occurrence of significant moves, capturing the latest data distribution trend, and releasing the perturbed data streams report in time. This protocol provides a provable privacy guarantee, reduces computation and storage costs, and provides valuable statistical information. The experimental results of real datasets show that the proposed method can protect the privacy of the data streams and provide available statistical data at the same time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.