Abstract

The mechanically induced release of adenosine-5′-triphosphate (ATP) from osteoblastic cells (MC3T3-E1) was measured in real time. A stretching device integrated into scanning electrochemical microscopy was developed to apply controlled mechanical strain to MC3T3-E1 cells. For ATP secretion, a stepwise yet uniform mechanical stress was imposed onto MC3T3-E1 cells. The ATP biosensors were positioned at a distance of approximately 30–40μm above the cell surface. Calibration functions were recorded prior to the cell measurements and revealed a linear response up to 40μM with a sensitivity of 1–5pA/μM ATP. Stretching MC3T3-E1 cells up to 21% resulted in a concentration of 30.57±4.82μM of extracellular ATP (N=12) detected above the cell surface. As a control experiment, nifedipine, a L-type voltage sensitive calcium channel (L-VSCC) inhibitor was applied, which blocks Ca2+entry from the outer medium into the cell. Inhibition resulted in a significantly smaller amount of released ATP, i.e., 7.08±1.93μM ATP (N=10). Further control experiments with glucose microbiosensors did not yield significant changes of the baseline current (N=8).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.