Abstract

Most strategies designed to reduce restenosis by the use of pharmacological or biological reagents involve direct inhibition of vascular smooth muscle cell (SMC) proliferation. Alternatively, SMC proliferation might be indirectly inhibited if reendothelialization could be specifically facilitated at sites of balloon-induced arterial injury. Accordingly, we investigated the hypothesis that application of an endothelial cell (EC)-specific mitogen to a freshly denuded intimal surface could accelerate reendothelialization and thereby attenuate intimal hyperplasia. The left carotid artery of 31 Sprague-Dawley rats was subjected to balloon injury, after which 16 rats were treated with a 30-minute incubation with 100 micrograms of vascular endothelial growth factor (VEGF), an EC-specific mitogen. Control animals (n = 15) received a 30-minute incubation with 0.9% saline. At 2 weeks after balloon injury, carotid artery reendothelialization was markedly superior in the VEGF-treated group compared with the control group (14.59 +/- 1.12 versus 7.96 +/- 0.51 mm2, P < 0.005). The extent of reendothelialization measured at 4 weeks after balloon injury remained superior for arteries treated with VEGF (18.04 +/- 0.90 mm2) versus saline (13.42 +/- 0.84 mm2, P < .005). Neointimal thickening was correspondingly attenuated to a statistically significant degree in arteries treated with VEGF versus the control group at both the 2-week and 4-week time points. Immunostaining for proliferating cell nuclear antigen (PCNA) disclosed a threefold increase in PCNA-positive cells in the neointima of control arteries versus VEGF-treated arteries at 2 weeks after injury. Application of VEGF, an EC-specific growth regulatory molecule, may be effectively used in vivo to promote reendothelialization and thereby indirectly attenuate neointimal thickening due to SMC proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.