Abstract

Arterial restenosis is responsible for the high failure rates of vascular reconstruction procedures. Local sustained drug delivery has shown promise in the prevention of restenosis. The drug release rate from mithramycin-loaded EVA matrices (0.1%) was evaluated, and their antirestenotic effect was studied in the rat carotid model and rabbit model of vascular grafts. The modulation of c-myc expression by mithramycin treatment was examined by immunohistochemistry in the rat carotid model. The proliferative response of injured rat arteries was studied by bromdeoxyuridine (BrdU) immunostaining. The impact of mithramycin treatment on vasomotor responses of the venous segments grafted into arterial circulation was studied ex vivo using vasoreactive compounds. Mithramycin was released exponentially from EVA matrices in PBS. Matrices co-formulated with PEG-4600 revealed enhanced release kinetics. The perivascular implantation of drug-loaded EVA–PEG matrices led to 50% reduction of neointimal formation, and reduced the c-myc expression and BrdU labeling in comparison to control implants. Decreased sensitivity of mithramycin-treated grafts to serotonin-induced vasoconstriction was observed. Local perivascular mithramycin treatment limits the functional alteration caused by the grafting of venous segments in high-pressure arterial environment, and potently inhibits stenosis secondary to grafting and angioplasty injury. The antirestenotic effect is associated with reduced c-myc expression and with subsequent decrease in SMC proliferation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.