Abstract

Glioblastoma is one of the most aggressive brain tumors and is associated with a very low overall median survival despite the current treatment. The standard of care used in clinic is the Stupp's protocol which consists of a maximal resection of the tumor when possible, followed by radio and chemotherapy using temozolomide. However, in most cases, glioblastoma cells infiltrate healthy tissues and lead to fatal recurrences. There are a lot of hurdles to overcome in the development of new therapeutic strategies such as tumor heterogeneity, cell infiltration, alkylating agent resistance, physiological barriers, etc., and few treatments are on the market today. One of them is particularly appealing because it is a local therapy, which does not bring additional invasiveness since tumor resection is included in the gold standard treatment. They are implants: the Gliadel® wafers, which are deposited post-surgery. Nevertheless, in addition to presenting important undesirable effects, it does not bring any major benefit in the therapy despite the strategy being particularly attractive. The purpose of this review is to provide an overview of recent advances in the development of innovative therapeutic strategies for glioblastoma using an implant-type approach. The combination of this local strategy with effective targeting of the tumor microenvironment as a whole, also developed in this review, may be of interest to alleviate some of the obstacles encountered in the treatment of glioblastoma.

Highlights

  • Glioblastoma (GBM) is the most common primary brain tumor in adults

  • This study demonstrated that the effective dose of BCNU to administrate to observe survival improvement is 7.7 mg of drug per implant and 8 implants maximum

  • The results indicated that in the presence of AuNR, nestin-positive cells as spheroids are more resistant to photothermal treatments than when they are cultured in a monolayer, indicating that the 3D model is closer to in vivo models than the 2D model

Read more

Summary

Introduction

Glioblastoma (GBM) is the most common primary brain tumor in adults. It is characterized by high infiltration into healthy brain tissue, rapid proliferation and important intra- and inter-tumor heterogeneity leading to a global chemoresistance and a high aggressivity [1]. This brain tumor is classified as a grade IV glioma tumor by the World Health Organization [2]. Approved FDA treatments against GBM are scarce primarily due to the difficulty of treating brain pathologies because of the blood-brain barrier (BBB) that protects the central nervous system [5]. Lomustine (CCNU) approved in 1976 for oral administration (80–110 mg/m2 every 6 weeks) and carmustin (BCNU) approved in 1977 for

Objectives
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call