Abstract

Coda wave interferometry (CWI) is a sensitive ultrasound method for the detection of weak and local changes in complex inhomogeneous media. In a nonlinear modification of the method discussed here, a high-frequency probe coda is compared to its replica obtained in the presence of low-frequency pumping. If, after the filtering-out of low frequencies, the coda signals are different, this is attributed to nonlinear pump–probe interaction induced by contact acoustical nonlinearity in the damaged zone. Actually, the CWI methods are used for global inspection of complex media, such as for example, concrete structures. In this work, a step forward is made; it consists in combining the CWI with the time-reversal (TR) technique in order to allow one to focus the pump wave on a selected area in the structure and to detect and localize a flaw. Time-reverse pump is possible only in pulsed mode due to the spatio-temporal wave compression. By this reason, the particularities of coda wave mixing in conventionally used continuous and pulsed pump mode are considered. It has been experimentally observed that an aftereffect of a pulsed pump provides a nonlinear interaction between pump and probe waves of a sufficient overall level for defect detection with TR. Finally, it was shown that a TR focusing even with the minimal available quality i.e., with only one transducer produces a sufficient contrast allowing to distinguish intact and damaged zones with nonlinear CWI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.