Abstract

We present a momentum-based accelerated iterative hard thresholding (IHT) for low-rank matrix completion. We analyze the convergence of the proposed Heavy Ball (HB) accelerated IHT near the solution and provide optimal step size parameters that guarantee the fastest rate of convergence. Since the optimal step sizes depend on the unknown structure of the solution matrix, we further propose a heuristic for parameter selection that is inspired by recent results in random matrix theory. Our experiment on a simple matrix completion setting verifies our analysis and illustrates the competitive rate of convergence that can be obtained with the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.