Abstract
In the Fermat-Weber problem, the location of a source point in ℝ N is sought which minimizes the sum of weighted Euclidean distances to a set of destinations. A classical iterative algorithm known as the Weiszfeld procedure is used to find the optimal location. Kuhn proves global convergence except for a denumerable set of starting points, while Katz provides local convergence results for this algorithm. In this paper, we consider a generalized version of the Fermat-Weber problem, where distances are measured by anl p norm and the parameterp takes on a value in the closed interval [1, 2]. This permits the choice of a continuum of distance measures from rectangular (p=1) to Euclidean (p=2). An extended version of the Weiszfeld procedure is presented and local convergence results obtained for the generalized problem. Linear asymptotic convergence rates are typically observed. However, in special cases where the optimal solution occurs at a singular point of the iteration functions, this rate can vary from sublinear to quadratic. It is also shown that for sufficiently large values ofp exceeding 2, convergence of the Weiszfeld algorithm will not occur in general.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.