Abstract

People are able to rapidly categorize briefly flashed images of real-world environments, even when they are reduced to line drawings. This setting allows for the study of time-limited perceptual grouping processes in the human visual system that are applicable to line drawings. Previous work (Wilder, Dickinson, Jepson, & Walther, 2018) showed that standard local features of individual contours, or junctions between contours, do not account for this rapid classification ability but, rather, the relative placement of these contours appeared to be important. Here we provide strong support for this observation by demonstrating that local ribbon symmetry between neighboring pairs of contours facilitates the categorization of complex real-world environments. To this end, we introduce a novel computational approach, based on the medial axis transform, for measuring the degree of local ribbon symmetry in a line drawing. We use this measure to separate the contour pixels for a given scene into the most ribbon symmetric half and the least ribbon symmetric half. We then show human observers the resulting half-images in a rapid-categorization experiment. Our results demonstrate that local ribbon symmetry facilitates the categorization of complex real-world environments. This is the first study of the role of local symmetry in inter-contour grouping for human scene classification. We conclude that local ribbon symmetry appears to play an important role in jump-starting the grouping of image content into meaningful units, even in flashed presentations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call