Abstract

We investigated the effect of abstract versus real-life meaningful images from sports on local contextual processing in two groups of professional athletes. Local context was defined as the occurrence of a short predictive series of stimuli occurring before delivery of a target event. EEG was recorded in 10 professional basketball players and 9 professional athletes of individual sports during three sessions. In each session, a different set of visual stimuli were presented: triangles facing left, up, right, or down; four images of a basketball player throwing a ball; four images of a baseball player pitching a baseball. Stimuli consisted of 15 % targets and 85 % of equal numbers of three types of standards. Recording blocks consisted of targets preceded by randomized sequences of standards and by sequences including a predictive sequence signaling the occurrence of a subsequent target event. Subjects pressed a button in response to targets. In all three sessions, reaction times and peak P3b latencies were shorter for predicted targets compared with random targets, the last most informative stimulus of the predictive sequence induced a robust P3b, and N2 amplitude was larger for random targets compared with predicted targets. P3b and N2 peak amplitudes were larger in the professional basketball group in comparison with professional athletes of individual sports, across the three sessions. The findings of this study suggest that local contextual information is processed similarly for abstract and for meaningful images and that professional basketball players seem to allocate more attentional resources in the processing of these visual stimuli.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call