Abstract

Local consistency techniques such as k-consistency are a key component of specialised solvers for constraint satisfaction problems. In this paper we show that the power of using k-consistency techniques on a constraint satisfaction problem is precisely captured by using a particular inference rule, which we call negative-hyper-resolution, on the standard direct encoding of the problem into Boolean clauses. We also show that current clause-learning SAT-solvers will discover in expected polynomial time any inconsistency that can be deduced from a given set of clauses using negative-hyper-resolvents of a fixed size. We combine these two results to show that, without being explicitly designed to do so, current clause-learning SAT-solvers efficiently simulate k-consistency techniques, for all fixed values of k. We then give some experimental results to show that this feature allows clause-learning SAT-solvers to efficiently solve certain families of constraint problems which are challenging for conventional constraint-programming solvers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.