Abstract

BackgroundComparative genomics aims to detect signals of evolutionary conservation as an indicator of functional constraint. Surprisingly, results of the ENCODE project revealed that about half of the experimentally verified functional elements found in non-coding DNA were classified as unconstrained by computational predictions. Following this observation, it has been hypothesized that this may be partly explained by biased estimates on neutral evolutionary rates used by existing sequence conservation metrics. All methods we are aware of rely on a comparison with the neutral rate and conservation is estimated by measuring the deviation of a particular genomic region from this rate. Consequently, it is a reasonable assumption that inaccurate neutral rate estimates may lead to biased conservation and constraint estimates.ResultsWe propose a conservation signal that is produced by local Maximum Likelihood estimation of evolutionary parameters using an optimized sliding window and present a Kullback-Leibler projection that allows multiple different estimated parameters to be transformed into a conservation measure. This conservation measure does not rely on assumptions about neutral evolutionary substitution rates and little a priori assumptions on the properties of the conserved regions are imposed. We show the accuracy of our approach (KuLCons) on synthetic data and compare it to the scores generated by state-of-the-art methods (phastCons, GERP, SCONE) in an ENCODE region. We find that KuLCons is most often in agreement with the conservation/constraint signatures detected by GERP and SCONE while qualitatively very different patterns from phastCons are observed. Opposed to standard methods KuLCons can be extended to more complex evolutionary models, e.g. taking insertion and deletion events into account and corresponding results show that scores obtained under this model can diverge significantly from scores using the simpler model.ConclusionOur results suggest that discriminating among the different degrees of conservation is possible without making assumptions about neutral rates. We find, however, that it cannot be expected to discover considerably different constraint regions than GERP and SCONE. Consequently, we conclude that the reported discrepancies between experimentally verified functional and computationally identified constraint elements are likely not to be explained by biased neutral rate estimates.

Highlights

  • Comparative genomics aims to detect signals of evolutionary conservation as an indicator of functional constraint

  • We have shown that our Maximum Likelihood (ML) estimation of substitution rates in an optimized Gauss window without assumptions on the rate prior leads to good performance in the mean squared error (MSE) sense

  • We presented and evaluated a novel method for the calculation of sequence conservation scores over multiple sequence alignments

Read more

Summary

Introduction

Comparative genomics aims to detect signals of evolutionary conservation as an indicator of functional constraint. Results of the ENCODE project revealed that about half of the experimentally verified functional elements found in non-coding DNA were classified as unconstrained by computational predictions. Following this observation, it has been hypothesized that this may be partly explained by biased estimates on neutral evolutionary rates used by existing sequence conservation metrics. Joint analysis of DNA orthologues from multiple species conveys important information about sequence properties. This comparative approach is a powerful concept in genome analysis today. Secondary and tertiary structures as well as interactions of non-coding RNA may be preserved with little primary sequence information remaining conserved [4]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.