Abstract
Applications of locally fine property for operators are further developed. LetE andF be Banach spaces andF:U(x 0)⊂E→F be C1 nonlinear map, whereU (x 0) is an open set containing pointx 0∈E. With the locally fine property for Frechet derivativesf′(x) and generalized rank theorem forf′(x), a local conjugacy theorem, i. e. a characteristic condition forf being conjugate tof′(x 0) near x0,is proved. This theorem gives a complete answer to the local conjugacy problem. Consequently, several rank theorems in advanced calculus are established, including a theorem for C1 Fredholm map which has been so far unknown. Also with this property the concept of regular value is extended, which gives rise to a generalized principle for constructing Banach submanifolds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.