Abstract
Macrophage colony-stimulating factor (M-CSF) is essential for differentiation of osteoclasts and macrophages from a common bone marrow precursor. Using ST-2 stromal cell/murine bone marrow coculture, we studied the effects of increasing amounts of M-CSF on differentiation of macrophages and osteoclasts. Addition of exogenous M-CSF caused a dose-dependent 98% decrease in tartrate-resistant acid phosphatase (TRAP)-positive multinucleated cells, accompanied by a 2.5-fold increase in nonspecific esterase-staining macrophages. Similar decrease in osteoclastic functional activity, including 125I-labeled calcitonin binding and calcitonin-stimulated adenosine 3',5'-cyclic monophosphate (cAMP) production, were observed. Addition of exogenous M-CSF beyond 6 days in coculture had a decreasing ability to inhibit osteoclast formation, suggesting that M-CSF exerts its effects early in osteoclast differentiation, during the proposed proliferative phase of osteoclast formation. Similarly, early addition of neutralizing anti-M-CSF inhibited osteoclast formation, with diminishing effects beyond day 9. These results suggest that local high concentrations of M-CSF may influence the early determination of terminal differentiation into either macrophages or osteoclasts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.