Abstract

ABSTRACTLength-biased data, which are often encountered in engineering, economics and epidemiology studies, are generally subject to right censoring caused by the research ending or the follow-up loss. The structure of length-biased data is distinct from conventional survival data, since the independent censoring assumption is often violated due to the biased sampling. In this paper, a proportional hazard model with varying coefficients is considered for the length-biased and right-censored data. A local composite likelihood procedure is put forward for the estimation of unknown coefficient functions in the model, and large sample properties of the proposed estimators are also obtained. Additionally, an extensive simulation studies are conducted to assess the finite sample performance of the proposed method and a data set from the Academy Awards is analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.