Abstract
It is well known that ecological processes such as population regulation and natural enemy interactions potentially occur over a range of spatial scales, and there is a substantial body of literature developing theoretical understanding of the interplay between these processes. However, there are comparatively few studies quantifying the long-term effects of spatial scaling in natural ecosystems. A key challenge is that trophic complexity in real-world biological communities quickly obscures the signal from a focal process. Seagrass meadows provide an excellent opportunity in this respect: in many instances, seagrasses effectively form extensive natural monocultures, in which hypotheses about endogenous dynamics can be formulated and tested. We present amongst the longest unbroken, spatially explict time series of seagrass abundance published to date. Data include annual measures of shoot density, total above-ground abundance, and associated epiphyte cover from five Zostera marina meadows distributed around the Isles of Scilly, UK, from 1996 to 2011. We explore empirical patterns at the local and metapopulation scale using standard time series analysis and develop a simple population dynamic model, testing the hypothesis that both local and metapopulation scale feedback processes are important. We find little evidence of an interaction between scales in seagrass dynamics but that both scales contribute approximately equally to observed local epiphyte abundance. By quantifying the long-term dynamics of seagrass-epiphyte interactions we show how measures of density and extent are both important in establishing baseline information relevant to predicting responses to environmental change and developing management plans. We hope that this study complements existing mechanistic studies of physiology, genetics and productivity in seagrass, whilst highlighting the potential of seagrass as a model ecosystem. More generally, this study provides a rare opportunity to test some of the predictions of ecological theory in a natural ecosystem of global conservation and economic value.
Highlights
The roles of spatial scale and structure in population dynamics remain a central theme in ecological research [1,2,3,4,5]
That potential habitat is infinite in extent and has no structure, with an equal probability of dispersal between neighbouring patches as those far apart; that local population dynamics are fast compared to metapopulation scale patch turnover, with local state moving between a stable equilibrium size or zero effectively instantly
First order autocorrelation was strong within time series of metapopulation patch occupancy (DAIC = 21.0, Fig. 3), suggesting that patch turnover may operate over a slower time scale than dynamics driving local seagrass density
Summary
The roles of spatial scale and structure in population dynamics remain a central theme in ecological research [1,2,3,4,5]. Habitat with the potential to be colonized by a focal species is discretized, with the resulting patches classed as either occupied or vacant. This model gives rise to the familiar ‘blinking light’ dynamics, with local occurrence moving between the two states, as a result of colonization through dispersal, and extinction [7]. These dynamics rely on some strong, and often biologically unrealistic assumptions. There is broad consensus that in many systems it is necessary to understand population dynamics over a range of spatial and temporal scales in order to explain observed species distributions [2,5,8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.