Abstract

The outcome of competitive interactions is likely to be influenced by both competitive dominance (i.e. niche-based dynamics) and ecological drift (i.e. neutral dynamics governed by demographic stochasticity). However, spatial models of competition rarely consider the joint operation of these two processes. We develop a model based on the original competition-colonization trade-off model that incorporates niche and neutral processes and several realistic facets of ecological dynamics: it allows local competition (i.e. competition within a patch) to occur within communities of a finite size, it allows competitors to vary in the degree of competitive asymmetry, and it includes the role of local migration (i.e. propagule pressure). The model highlights the role of community size, i.e. the number of competitors in the local community, in mediating the relative importance of stochastic and deterministic forces. In metacommunities where local communities are small, ecological drift is substantial enough that strong competitors become effectively neutral, creating abrupt changes in the outcome of competition not predicted by the standard competition-colonization trade-off. Importantly, the model illustrates that, even when other aspects of species interactions (e.g. migration ability, competitive ability) are unchanged, local community size can alter the dynamics of metacommunity persistence. Our work demonstrates that activities which reduce the size of local communities, such as habitat destruction and degradation, effectively compound the extinction debt.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call