Abstract

Community detection aims to find dense subgraphs in a network. We consider the problem of finding a community locally around a seed node both in unweighted and weighted networks. This is a faster alternative to algorithms that detect communities that cover the whole network when actually only a single community is required. Further, many overlapping community detection algorithms use local community detection algorithms as basic building block. We provide a broad comparison of different existing strategies of expanding a seed node greedily into a community. For this, we conduct an extensive experimental evaluation both on synthetic benchmark graphs as well as real world networks. We show that results both on synthetic as well as real-world networks can be significantly improved by starting from the largest clique in the neighborhood of the seed node. Further, our experiments indicate that algorithms using scores based on triangles outperform other algorithms in most cases. We provide theoretical descriptions as well as open source implementations of all algorithms used.

Highlights

  • Community detection is a common task in network analysis

  • We show that results both on synthetic as well as real-world networks can be significantly improved by starting from the largest clique in the neighborhood of the seed node

  • For all of these local community detection algorithms, we provide novel or improved implementations in C++ as part of the open source network analysis tool suite NetworKit [13]

Read more

Summary

Introduction

Community detection is a common task in network analysis. Depending on the type of the considered network, such a community can be a group of friends in a social network, a functional module in a protein-protein interaction network or a group of similar documents in a network based on document similarity. We refer the interested reader to [1,2,3] for an overview

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.