Abstract

AbstractIn seasonal climates, germination timing is mainly controlled by temperature, especially in species with physiological seed dormancy. The germination response to temperature may, however, vary among populations across the distribution range of species. Understanding how populations along climate gradients vary in their sensitivity to temperature is important for determining their vulnerability to climate variability and change. Here, we investigated the germination response of twoEricaspecies with physiological seed dormancy (E. australisandE. umbellata) to changes in temperature throughout the seasons (simulated autumn through to spring) and to the local climate in six localities across a latitudinal gradient in western Iberia. Effects were studied with and without exposing the seeds to a heat shock. The local climate of seed provenance emerged as a key factor in modifying the germination sensitivity to germination temperature and their variation through the seasons. Although each species showed idiosyncratic germination responses to temperature treatments and across the gradient, germination of both species was sensitive to warmer temperatures and to a heat shock. Both showed similar seasonal germination patterns: as we moved from south to north, populations tended to have a larger germination peak in spring, which was greater at colder temperatures. We conclude that rising temperatures associated with climate change will affect these species, particularly at their northern ranges, where many seeds will remain dormant during warmer winters. Arguably, models aiming at assessing climate change impacts in these species need to include such variability across latitude.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.