Abstract

We previously reported [Naruse, et al. Sci. Rep. 4, 6077, 2014] that the geometrical randomness of disk-shaped silver nanoparticles, which exhibit high reflection at near-infrared wavelengths, serves as the origin of a particle-dependent localization and hierarchical distribution of optical near-fields in the vicinity of the nanostructure. In this study, we show that the induced polarizations are circular, particularly at resonant wavelengths. We formulate optical near-field processes between nanostructures, accounting for their polarizations and geometries, and attribute circular polarization to the layout-dependent phase difference between the electrical susceptibilities associated with longitudinal and transverse-electric components. This study clarifies the fundamental optical properties of random nanostructured matter and offers generic theoretical concepts for implementing nanoscale polarizations of optical near-fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call