Abstract

Limbic neurocircuits play a central role in regulation of the hypothalamic–pituitary–adrenocortical (HPA) axis. Limbic influences on adrenocortical hormone secretion are mediated by transynaptic activation or inhibition of hypophysiotrophic neurons in the medial parvocellular paraventricular nucleus (PVN). Projections from the ventral subiculum, prefrontal cortex, medial amygdala, lateral septum, paraventricular thalamus and suprachiasmatic nucleus (SN) terminate in the immediate surround of the PVN, an area heavily populated by GABAergic interneurons. As such, these regions are positioned to modulate paraventricular output via excitation or inhibition of interneuronal projections into the PVN. In addition, the same limbic and diencephalic regions have projections to local PVN-projecting hypothalamic and basal telencephalic nuclei, including the dorsomedial and medial preoptic nuclei and the bed nucleus of the stria terminalis. These regions are involved in both inhibitory and excitatory regulation of the stress axis, indicating that they contain heterogeneous neuronal populations whose relative impact on the PVN is determined by the nature of afferent stimuli. Thus, limbic modulation of the pituitary–adrenocortical system appears to be a multisynaptic process integrated at the level of local PVN-projecting neurocircuits. Local circuits are likely the primary integrators of anticipatory stress responses, and may indeed be the focus of HPA dysfunction seen with aging or affective disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.