Abstract
Superior properties in organic mixed ionic-electronic conductors (OMIECs) over inorganic counterparts have inspired intense interest in biosensing, soft-robotics, neuromorphic computing, and smart medicine. However, slow ion transport relative to charge transport in these materials is a limiting factor. Here, it is demonstrated that hydrophilic molecules local to an interfacial OMIEC nanochannel can accelerate ion transport with ion mobilities surpassing electrophoretic transport by more than an order of magnitude. Furthermore, ion access to this interfacial channel can be gated through local surface energy. This mechanism is applied in a novel sensing device, which electronically detects and characterizes chemical reaction dynamics local to the buried channel. The ability to enhance ion transport at the nanoscale in OMIECs as well as govern ion transport through local chemical signaling enables new functionalities for printable, stretchable, and biocompatible mixed conduction devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.