Abstract

How the chemical and topological short- to medium-range order develops in Al–Tb glass and its ultimate effect on the control of the high number density of face-centered-cubic-Al (fcc-Al) nuclei during devitrification are described. A combined study using high-energy X-ray diffraction (HEXRD), atom probe tomography (APT), transmission electron microscopy and fluctuation electron microscopy (FEM) was conducted in order to resolve the local structure in amorphous Al90Tb10. Reverse Monte Carlo simulations and Voronoi tessellation analysis based on HEXRD experiments revealed a high coordination of Al around Tb atoms in both liquid and amorphous states. APT results show Al-rich and Al-depleted regions within the as-quenched alloy. A network structure of Tb-rich clusters divides the matrix into nanoscale regions where Al-rich clusters are isolated. It is this finely divided network which allows the amorphous structure to form. Al-rich regions are the locus for fcc-Al crystallization, which occurs before the intermetallic crystallization. FEM reveals medium-range ordered regions ∼2nm in diameter, consistent with fcc-Al and trigonal-like Al3Tb crystal structures. We propose that the high coordination of Al around Tb limits diffusion in the intermetallic network, allowing for the isolated Al-rich regions to form at high density. These regions are responsible for the extremely high density of Al nanocrystal nuclei.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.