Abstract

Chain entanglements govern the dynamics of polymers and will therefore affect the processability and kinetics of ordering; it follows that through these parameters chain dynamics can also affect charge transport in conjugated polymers. The effect of nematic coupling on chain entanglements is probed by linear viscoelastic measurements on poly[N-9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) and poly((9,9-dioctylfluorene-2,7-diyl)-alt-(4,7-di(thiophene-2-yl)-2,1,3-benzothiadiazole)-5′,5″-diyl) (PFTBT) with varying molecular weights. We first verify the existence of nematic phases in both PFTBT and PCDTBT and identify nematic–isotropic transition temperatures, TIN, between 260 and 300 °C through a combination of differential scanning calorimetry, polarized optical microscopy, temperature-dependent X-ray scattering, and rheology. In addition, both PCDTBT and PFTBT show a glass transition temperature (Tg) and TIN, whereas only PFTBT has a melting temperature Tm o...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.