Abstract
Context:Physiological insights into blood flow alterations in cortical vessels after superficial temporal artery-middle cerebral artery (STA-MCA) bypass surgery are important for the prognosis of bypass sustainability and hemodynamic patency.Aims:This study aims to assess the impact of STA-MCA bypass on local hemodynamics for patients with symptomatic carotid occlusions and Moyamoya disease.Settings and Design:This article presents a prospective nonrandomized study of intraoperative blood flow measurements in cortical branches of MCA and donor vessel before and after cerebral revascularization.Materials and Methods:Evaluation of local hemodynamic parameters was established for 112 patients with symptomatic carotid occlusive disease and cerebrovascular insufficiency during STA-MCA bypass surgery. We used intraoperative Doppler ultrasonography (89 patients – 72%), flowmetry (56 cases – 50%), and in 33 cases both methods. For physical justification of observed facts, we performed computational simulation with OpenFOAM CFD framework using Navier-Stokes nonstationary hemodynamic model.Statistical Analysis Used:All calculations were performed with IBM SPSS Statistics version 10.0 software. We used parametric (Z-test and Student's t-test) and nonparametric models (Wilcoxon, Mann–Whitney). For categorical values, we used Fisher's exact test.Results:Local cerebral hemodynamics after revascularization surgery significantly depended on initial perfusion deficit and the ability of bypass to reverse the blood flow in proximal parts of cortical artery (86 cases, 77%). Mechanism of cortical blood flow alteration was related to donor vessel cut flow value and potential consumption threshold of acceptor artery.Conclusions:Knowledge of hemodynamic principles of flow redistribution after STA-MCA bypass is important to improve bypass stainability and leads to better revascularization results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.