Abstract

We give a general local central limit theorem for the sum of two independent random variables, one of which satisfies a central limit theorem while the other satisfies a local central limit theorem with the same order variance. We apply this result to various quantities arising in stochastic geometry, including: size of the largest component for percolation on a box; number of components, number of edges, or number of isolated points, for random geometric graphs; covered volume for germ-grain coverage models; number of accepted points for finite-input random sequential adsorption; sum of nearest-neighbour distances for a random sample from a continuous multidimensional distribution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call