Abstract

Herpes simplex virus type 1 (HSV-1) infection results in lifelong chronic infection of trigeminal ganglion (TG) neurons, also referred to as neuronal HSV-1 latency, with periodic reactivation leading to recrudescent herpetic disease in some persons. HSV-1 proteins are expressed in a temporally coordinated fashion during lytic infection, but their expression pattern during latent infection is largely unknown. Selective retention of HSV-1 reactive T-cells in human TG suggests their role in controlling reactivation by recognizing locally expressed HSV-1 proteins. We characterized the HSV-1 proteins recognized by virus-specific CD4 and CD8 T-cells recovered from human HSV-1–infected TG. T-cell clusters, consisting of both CD4 and CD8 T-cells, surrounded neurons and expressed mRNAs and proteins consistent with in situ antigen recognition and antiviral function. HSV-1 proteome-wide scans revealed that intra-TG T-cell responses included both CD4 and CD8 T-cells directed to one to three HSV-1 proteins per person. HSV-1 protein ICP6 was targeted by CD8 T-cells in 4 of 8 HLA-discordant donors. In situ tetramer staining demonstrated HSV-1-specific CD8 T-cells juxtaposed to TG neurons. Intra-TG retention of virus-specific CD4 T-cells, validated to the HSV-1 peptide level, implies trafficking of viral proteins from neurons to HLA class II-expressing non-neuronal cells for antigen presentation. The diversity of viral proteins targeted by TG T-cells across all kinetic and functional classes of viral proteins suggests broad HSV-1 protein expression, and viral antigen processing and presentation, in latently infected human TG. Collectively, the human TG represents an immunocompetent environment for both CD4 and CD8 T-cell recognition of HSV-1 proteins expressed during latent infection. HSV-1 proteins recognized by TG-resident T-cells, particularly ICP6 and VP16, are potential HSV-1 vaccine candidates.

Highlights

  • The neurotropic human alphaherpesvirus herpes simplex virus type 1 (HSV-1) is endemic worldwide

  • HSV-1 is an endemic human herpesvirus worldwide that establishes a lifelong latent infection of neurons in the trigeminal ganglion (TG), allowing intermittent reactivation resulting in recurrent disease in some persons

  • The data indicate that the human TG is an immunocompetent environment for CD4 and CD8 T-cell recognition of diverse HSV-1 proteins expressed during latent infection and that the viral antigens identified are rational candidates for HSV-1 subunit vaccines

Read more

Summary

Introduction

The neurotropic human alphaherpesvirus herpes simplex virus type 1 (HSV-1) is endemic worldwide. It is acquired during early childhood via the orofacial route resulting in a lifelong chronic infection of neurons, referred to as neuronal HSV-1 latency, in the bilateral trigeminal ganglia (TG) [1]. Latent HSV-1 periodically reactivates, producing infectious virus that may lead to recrudescent lesions in some persons. Both primary and recurrent disease can result in clinical disorders of variable severity or even death, emphasizing the unmet need for preventive and therapeutic vaccines [1]. Vaccines induced antigen-specific antibodies and CD4 Tcells, but not CD8 T-cells, arguing for novel vaccine formulations that include specific HSV-1 antigens targeted by both antibodies as well as CD4 and CD8 T-cells [11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call