Abstract

A multistate local CC2 response method for the calculation of orbital-relaxed first order properties is presented for ground and electronically excited states. It enables the treatment of excited state properties including orbital relaxation for extended molecular systems and is a major step on the way towards analytic gradients with respect to nuclear displacements. The Laplace transform method is employed to partition the eigenvalue problem and the lambda equations, i.e., the doubles parts of these equations are inverted on-the-fly, leaving only the corresponding effective singles equations to be solved iteratively. Furthermore, the state specific local approximations are adaptive. Density-fitting is utilized to decompose the electron-repulsion integrals. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated on the example of an organic sensitizer for solar-cell applications, which consists of about 100 atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call