Abstract
<abstract><p>We prove local Calderón-Zygmund type estimates for the gradient of weak solutions to degenerate or singular parabolic equations of $ p $-Laplacian type with $ p &gt; \frac{2n}{n+2} $ in weighted Lebesgue spaces $ L^q_w $. We introduce a new condition on the weight $ w $ which depends on the intrinsic geometry concerned with the parabolic $ p $-Laplace problems. Our condition is weaker than the one in <sup>[<xref ref-type="bibr" rid="b13">13</xref>]</sup>, where similar estimates were obtained. In particular, in the case $ p = 2 $, it is the same as the condition of the usual parabolic $ A_q $ weight.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.