Abstract

This scientific paper provides a theoretical, numerical and experimental analysis of local stability of axially compressed columns made of thin-walled rectangular concrete-filled steel tubes (CFSTs), with the consideration of initial geometric imperfections. The work presented introduces the theory of elastic critical stresses in local buckling of rectangular wall members under uniform compression. Moreover, a numerical calculation method for the determination of the critical stress coefficient is presented, using a differential equation for a slender wall with a variety of boundary conditions. For comparison of the results of the numerical analysis with those collected by experiments, a new model is created to study the behaviour of the composite members in question by means of the ABAQUS computational-graphical software whose principles are based on the finite element method (FEM). In modelling the analysed members, the actual boundary and loading conditions and real material properties are taken into account, obtained from the experiments and material tests on these members. Finally, the results of experiments on such members are analysed and then compared with the numerical values. In conclusion, several recommendations for the design of axially compressed composite columns made of rectangular concrete-filled thin-walled steel tubes are suggested as a result of this comparison.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.