Abstract

Cold-formed open steel sections are comprised of component plates termed stiffened elements (webs) and unstiffened elements (flanges). The local buckling and post-local buckling behaviour of sections may be determined from the behaviour of the component plates. Much research effort has documented the theoretical elastic local buckling of plates and sections, however until recently few experimental studies have been reported on the local buckling and post-local buckling behaviour of unstiffened plates. This paper presents experimental and numerical studies of unstiffened plates and sections that contain them in both compression and bending, and in particular analyses the mechanism that provides post-buckling strength. It is shown that, as with stiffened elements, the mechanism is the post-local buckling redistribution of stress, however unlike stiffened elements this redistribution can occur to such an extent that tensile stresses commonly form in axially compressed slender elements. The stress distributions at ultimate are compared with current international cold-formed steel specifications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call