Abstract

The mathematical analysis to achieve everywhere regularity in the interior of weak solutions to nonlinear elliptic systems usually starts from their local boundedness. Having in mind De Giorgi’s counterexamples, some structure conditions must be imposed to treat systems of partial differential equations. On the contrary, in the scalar case of a general elliptic single equation a well established theory of regularity exists. In this paper we propose a unified approach to local boundedness of weak solutions to a class of quasilinear elliptic systems, with a structure condition inspired by Ladyzhenskaya–Ural’tseva’s work for linear systems, as well as valid for the general scalar case. Our growth assumptions on the nonlinear quantities involved are new and general enough to include anisotropic systems with sharp exponents and the p, q-growth case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.