Abstract

An analytical model is proposed to predict local bond strength (τf) by incorporating heterogeneity at interface regions for deformed reinforcing bars centrally anchored in concrete. The rib width on the bar surface is introduced as an interfacial characteristic parameter G in the proposed model; this accounts for the heterogeneity. Both τf and the local interfacial fracture energy (GIIf) of each specimen were found to be linked to G and can be determined analytically from the maximum pull-out loads (Fmax) from tests. It was found that the predicted τf was larger than the maximum average bond stress (τavg-max); the discrepancy between the two values reduced with an increase in L/G. Moreover, with an increase in L/G, the predicted τf showed a certain decrease, with the reduction decreasing with stronger interfacial homogeneity. The predicted GIIf was found to be significantly increased because of the weaker boundary effect. The validity of the proposed model was verified using comparisons of predicted Fmax (using the determined values of τf and GIIf) and the experimental Fmax, with the only failure mode being bar pull-out. Moreover, the model can be applied to steel or fibre-reinforced polymer bars and the concrete refers to all types of cementitious materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.