Abstract

AbstractThe use of bundled bars in highly loaded concrete members instead of individual bars can reduce or even avoid reinforcement congestion, allowing easier placing and compaction of concrete, since bundles (with two or more side‐by‐side bars) are less obstructive to fresh‐concrete flow. However, there is still a lack in knowledge of the fundamental phenomena related to the bond behavior of bars in bundles. Therefore, design code rules for anchorages and splices differ significantly among International Standards (Eurocode 2, fib Model Code 2010, and ACI 318–19). The present paper reports the results of more than 100 pullout tests with short embedded length with the aim of comparing the local bond behavior of bundles with that of corresponding notional individual bars. Among the three criteria usually introduced to compare bundled and individual bars, based on the concepts of “equivalent sectional area,” and “minimum or maximum sectional perimeter,” the first and the second are introduced in this paper. Experimental results show that both criteria are suitable methods for evaluating the bearing capacity of bundled bar anchorages, even if equivalent area criterion seems to be slightly more conservative. The experimental results provide also information on the bursting forces generated by the wedge action of the ribs which clearly increases with bar diameter. Finally, experimental results are compared with design rules for anchorage strength of bundled bars as prescribed by fib‐Model Code 2010.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.