Abstract

The initial transient response of a Gibbs type thermoelectric probe embedded in human resting leg muscle was used for absolute quantitative measurement of local blood flow per unit tissue volume (local perfusion). The probe consisted of two thermistor-containing needles, one of which was heated by a constant electrical power input. The temperatures of both thermistors were recorded continuously on a two-channel, fast-response recorder. Upon sudden occlusion of the blood flow to the leg, each temperature vs. time record exhibited a change of slope. The change in slope of the temperature difference, divided by the temperature difference, (degrees/minute degree) was identified with the local perfusion (milliliters/minute milliliter) existing just before occlusion. The local perfusions determined agreed in range and mean with literature values of average perfusion by venous occlusion plethysmography. The nature of the local blood flow measured by the present method is discussed relative to that by other methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.