Abstract

We introduce a new algebraic structure called local biquandles and show how colorings of oriented classical link diagrams and of broken surface diagrams are related to tribracket colorings. We define a (co)homology theory for local biquandles and show that it is isomorphic to Niebrzydowski's tribracket (co)homology. This implies that Niebrzydowski's (co)homology theory can be interpreted similarly as biquandle (co)homology theory. Moreover through the isomorphism between two cohomology groups, we show that Niebrzydowski's cocycle invariants and local biquandle cocycle invariants are the same.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.