Abstract

The structure of scientific collaboration networks provides insight on the relationships between people and disciplines. In this paper, we study a bipartite graph connecting authors to publications and extract from it clusters of authors and articles, interpreting the author clusters as research groups and the article clusters as research topics. Visualisations are proposed to ease the interpretation of such clusters in terms of discovering leaders, the activity level, and other semantic aspects. We discuss the process of obtaining and preprocessing the information from scientific publications, the formulation and implementation of the clustering algorithm, and the creation of the visualisations. Experiments on a test data set are presented, using an initial prototype implementation of the proposed modules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.