Abstract

Continuing Chicone and Jacobs’ work for planar Hamiltonian systems of Newton’s type, in this paper we study the local bifurcation of critical periods near a nondegenerate center of the cubic Liénard equation with cubic damping and prove that at most 2 local critical periods can be produced from either a weak center of finite order or the linear isochronous center and that at most 1 local critical period can be produced from nonlinear isochronous centers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.