Abstract

In this paper, we analyze the local bifurcation phenomena in a simple system described by equation x ˙ ( t ) = - ax ( t ) + b sin ( x ( t - τ ) ) , which is an one-dimensional linear system with nonlinear delayed feedback. Such systems have been proven to exhibit chaotic behavior, and thus can be viewed as the so-called chaos anticontrol systems. In this paper, the nonlinearity is chosen as the trigonometric function sin ( · ) , different from the existing ones. By local analysis we prove that with increasing parameters, the number of equilibria increases and Hopf bifurcation occurs near some equilibria. This complex bifurcation phenomenon can help to understand the complex behavior of such models. To illustrate the theoretical results, bifurcation diagrams are numerically calculated and Hopf bifurcation and chaotic behavior are identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.