Abstract
Levy's modulus of continuity is proved for infinite dimensional Wiener processes. Using the loglog law for a Banach space valued Wiener process in [7], we prove the loglog law for Hilbert space valued stochastic integrals, if the integrand is Holder continuous. From a corollary of Kolmogorov's law we derive the Holder continuity of Hilbert space valued stochastic integrals if the fourth moment of the integrand is uniformly bounded. As an application we show that the mild solution of a stochastic evolution equation has a continuous version if the semigroup governing this equation is analytic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.