Abstract

The problem of identification of a nonstationary stochastic system is considered and solved using local basis function approximation of system parameter trajectories. Unlike the classical basis function approach, which yields parameter estimates in the entire analysis interval, the proposed new identification procedure is operated in a sliding window mode and provides a sequence of point (rather than interval) estimates. It is shown that for the polynomial basis all computations can be carried out recursively and that two important design parameters – the number of basis functions and the size of the local analysis window – can be chosen in an adaptive way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.