Abstract

Background and objectiveLabeling pathology images is often costly and time-consuming, which is quite detrimental for supervised pathology image classification that relies heavily on sufficient labeled data during training. Exploring semi-supervised methods based on image augmentation and consistency regularization may effectively alleviate this problem. Nevertheless, traditional image-based augmentation (e.g., flip) produces only a single enhancement to an image, whereas combining multiple image sources may mix unimportant image regions resulting in poor performance. In addition, the regularization losses used in these augmentation approaches typically enforce the consistency of image level predictions, and meanwhile simply require each prediction of augmented image to be consistent bilaterally, which may force pathology image features with better predictions to be wrongly aligned towards the features with worse predictions. MethodsTo tackle these problems, we propose a novel semi-supervised method called Semi-LAC for pathology image classification. Specifically, we first present local augmentation technique to randomly apply different augmentations produces to each local pathology patch, which can boost the diversity of pathology image and avoid mixing unimportant regions in other images. Moreover, we further propose the directional consistency loss to enforce restrictions on the consistency of both features and prediction results, thus improving the ability of the network to obtain robust representations and achieve accurate predictions. ResultsThe proposed method is evaluated on Bioimaging2015 and BACH datasets, and the extensive experiments show the superior performance of our Semi-LAC compared with state-of-the-art methods for pathology image classification. ConclusionsWe conclude that using the Semi-LAC method can effectively reduce the cost for annotating pathology images, and enhance the ability of classification networks to represent pathology images by using local augmentation techniques and directional consistency loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.