Abstract

The local structure in a ${\mathrm{Pd}}_{40}{\mathrm{Ni}}_{40}{\mathrm{P}}_{20}$ bulk metallic glass was examined using a spherical-aberration-corrected high resolution TEM. Fcc-Pd(Ni) type nanoclusters and local compound (phosphide)-like nanoclusters with sizes of $1--2\phantom{\rule{0.3em}{0ex}}\mathrm{nm}$ embedded in a dense-randomly-packed amorphous matrix were clearly observed under an appropriate imaging condition. However, three-dimensional atom-probe elemental mapping revealed there is virtually no nanoscale compositional difference between the nanoclusters and amorphous matrix beyond the statistical error range. A very small interfacial energy between the nanophase and the matrix is able to form a metastable amorphous phase with a structural fluctuation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.