Abstract
We consider n identically prepared qubits and study the asymptotic properties of the joint state \rho^{\otimes n}. We show that for all individual states \rho situated in a local neighborhood of size 1/\sqrt{n} of a fixed state \rho^0, the joint state converges to a displaced thermal equilibrium state of a quantum harmonic oscillator. The precise meaning of the convergence is that there exist physical transformations T_{n} (trace preserving quantum channels) which map the qubits states asymptotically close to their corresponding oscillator state, uniformly over all states in the local neighborhood. A few consequences of the main result are derived. We show that the optimal joint measurement in the Bayesian set-up is also optimal within the pointwise approach. Moreover, this measurement converges to the heterodyne measurement which is the optimal joint measurement of position and momentum for the quantum oscillator. A problem of local state discrimination is solved using local asymptotic normality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.