Abstract

Assortativity, i.e. the tendency of a vertex to bond with another based on their similarity, such as degree, is an important network characteristic that is well-known to be relevant for the network’s robustness against attacks. Commonly it is analyzed on the global level, i.e. for the whole network. However, the local structure of assortativity is also of interest as it allows to assess which of the network’s vertices and edges are the most endangering or the most protective ones. Hence, it is quite important to analyze the contribution of individual vertices and edges to the network’s global assortativity. For unweighted networks Piraveenan et al. (2008; 2010) and Zhang et al. (2012) suggest two allegedly different approaches to measure local assortativity. In this paper we show their equivalence and propose generalized local assortativity measures that are also applicable to weighted (un)directed networks. They allow to analyze the assortative behavior of edges and vertices as well as of entire network components. We illustrate the usefulness of our measures based on theoretical and real-world weighted networks and propose new local assortativity profiles, which provide, inter alia, information about the pattern of local assortativity with respect to edge weight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.